Bangun Datar - Poin 100

Bangun Datar - Selamat pagi, siang, sore, atau pun malam untuk Anda para pembaca situs Poin 100. Bagaimana hari kalian? Semoga selalu di liputi kebahagiaan. Nah di hari yang menyenangkan ini, kami akan mengulas tentang "Bangun Datar" yang mungkin saja sedang Anda cari beberapa waktu lalu.

Keberadaan internet membuat siapa saja bisa mengakses berbagai informasi, maka tidak heran belakangan ini banyak sekali betebaran situs-situs yang membahas mengenai Bangun Datar. Hal ini sangat logis mengingat di era pandemi ini, masyarakat kita lebih sering melakukan proses belajar mengajar secara daring. Baiklah sudah cukup basa-basinya, yuk langsung masuk ke pembahasan saja.

Penjelasan Lengkap Bangun Datar

Berdasarkan yang disebutkan oleh wikipedia, bangun datar merupakan sebutan untuk berbagai bangun dua dimensi.

Bangun datar diantaranya seperti: lingkaran, belah ketupat, layang-layang, trapesium, jajar genjang, segitiga, persegi panjang serta persegi.

Pada tiap-tiap bangun tersebut memiliki rumus untuk menghitung luas sekaligus keliling yang berbeda satu bangun dengan bangun yang lain. Selengkapnya mengenai bidang datar, simak baik-baik ulasan di bawah ini ya.

Bangun Datar

Melengkapi uraian di atas, bangun datar merupakan suatu bagian dari bidang datar yang dibatasi oleh garis-garis lurus atau lengkung.

Definisnya sendiri secara rinci ialah: suatu bangun yang memiliki bidang rata serta mempunyai dua dimensi yakni panjang dan lebar namun tidak mempunyai tinggi dan tebal.

Dengan begitu, pengertian singkatnya dari bangun datar adalah abstrak.

Rumus Bangun Datar

Berikut ini akan kami berikan macam atau jenis dari bangun datar beserta sifatnya. Perhatikan ulasan di bawah ini.

1. Persegi

Pengertian Persegi

Persegi merupakan suatu bangun datar 2 dimensi yang terbentuk oleh 4 buah rusuk dengan memiliki ukuran sama panjang serta memiliki 4 buah sudut siku – siku.

Persegi juga bisa kita sebut sebagai bangun datar yang mempunyai sisi sisi sama panjang serta sudut sudut sama besar.

Sifat Persegi

  1. Seluruh sisi-sisinya memiliki ukuran panjang yang sama serta seuruh sisinya berhadapan sejajar.
  2. Masing-masing sudut yang dimilikinya adalah sudut siku-siku.
  3. Memiliki dua diagonal dengan ukuran panjang yang sama sama serta berpotongan di tengah-tengah dan membentuk sudut siku-siku.
  4. Pada masing-masing sudutnya di bagi dua sama besarnya oleh diagonalnya.
  5. Memiliki empat buah sumbu simetri.

Rumus yang ada pada Persegi

Berikut ini adalah beberapa rumus yang biasa digunakan pada bangun persegi, antara lain:

Rumus luas persegi, yaitu:

L = S x S

Rumus keliling persegi, yaitu:

K = S + S + S + S ataupun K = 4 x S

Keterangan:

  • L: Luas
  • K: Keliling
  • S: Sisi

Contoh Soal:

Perhatikanlah gambar di bawah ini:

bangun datar adalah

Dari gambar di atas, tentukan:

a. Tentukan luas perseginya:
b. Tentukan keliling perseginya:

Jawab:

a. Rumus Luas persegi ABCD yakni: s x s, sehingga

= 5 cm x 5 cm
= 25 cm2.

Jadi, luas persegi ABCD yaitu: 25 cm2.

b. Rumus Keliling persegi ABCD ialah: 4 x s, sehingga

= 4 x 5 cm
= 20 cm.

Jadi, jumlah keliling persegi ABCD tersebut yaitu 20 cm.

2. Persegi Panjang

Pengertian Persegi Panjang

Persegi panjang meurpakan suatu bangun datar 2 dimensi yang terbentuk oleh 2 buah pasang rusuk yang panjang serta sejajar dan memiliki 4 buah sudut siku – siku.

Sifat Bangun Datar Persegi Panjang

  1. Masing-masing sisi-sisi yang berhadapan memiliki ukuran sama panjang dan juga sejajar.
  2. Seluruh sudutnya merupakan sudut siku-siku.
  3. Mempunyai dua buah diagonal yang sama panjang serta saling berpotongan di titik pusat bangun persegi panjang. Titik tersebut adalah membagi dua bagian diagonal dengan ukuran sama panjang.
  4. Mempunyai dua buah sumbu simetri yakni sumbu vertikal dan juga sumbu horizontal.

Rumus yang ada pada Bangun Datar Persegi Panjang

Rumus luas persegi panjang, yaitu:

L = p x l

Rumus keliling persegi panjang, yaitu:

K  = 2 x (p + l)

Keterangan:

  • L: Luas
  • K: Keliling
  • p: panjang
  • l: lebar

Contoh Soal 

Suatu bangun persegi panjang, mempunyai p = 10 cm dan l = 5 cm, terdiri atas  EFGH:

Pertanyaan:

a. Hitunglah luas persegi panjang EFGH:
b. Hitunglah keliling persegi panjang EFGH!:

Jawab:

a. Rumus luas persegi panjang EFGH adalah L= p x l, sehingga

L  = 10 cm x 5 cm
L = 50 cm2.

Jadi, luas persegi panjang EFGH yaitu 50 cm2.

b. Rumus Keliling sama persegi panjang EFGH adalah: 2 x (p + l), sehingga

= 2 x (10 cm + 5 cm)
= 2 x 15 cm.
= 30 cm

Jadi, keliling persegi panjang EFGH yaitu 50 cm.

3. Segitiga

Pengertian Bangun Datar Segitiga

Segitiga merupakan suatu bangun datar 2 dimensi yang dibentuk oleh 3 buah sisi yang berwujud garis lurus serta 3 buah sudut.

Sehingga bangun datar yang terbentuk dari tiga atau lebih garis lurus disebut sebagai segitiga.

Segitiga juga menjadi bangun datar yang penting dalam sebuah desain rumah, bagi kamu yang ingin melihat referensi rumah indah impian maka bisa kunjungi ruangarsitek.id

Sifat Bangun Datar Segitiga

  1. Pada bangunan segitiga, ketiga sudutnya memiliki besaran 180º. (jika dijumlahkan hasilnya 180)
  2. Sifat Segitiga mempunyai 3 sisi serta 3 titik sudut.

Rumus yang ada pada Bangun Datar Segitiga

Rumus luas segitiga yaitu:

Luas = ½ x a x t

Rumus keliling segitiga yaitu:

Keliling = s + s + s atau K = a + b + c

Contoh Soal

Suatu bangun segitiga memiliki sebuah ukuran seperti yang tertera di gambar di bawah ini:

contoh soal bangun datar

Pertanyaan:

a. Hitunglah luas segitiga :
b. Hitunglah keliling segitiga :

Jawab:

a. Luas segitiga Rumusnya yaitu ½  x  a  x  t, sehingga

= ½ x 12 cm2.
= 6 cm2

Jadi, hasil perhitungan dari luas segitiga adalah 6 cm2.

b.  Keliling segitiga nya adalah = s + s + s, sehingga

= AC+AB+BC
= 3cm+4cm+5cm
= 12 cm.

Jadi, keliling segitiga adalah 12 cm.

4. Jajar genjang

Pengertian Bangun Datar Jajar genjang

Pengertian dari jajar genjang sendiri merupakan suatu bangun datar 2 dimensi yang dibentuk atas 2 buah pasang rusuk yang di mana pada masing – masing nya memiliki ukuran sama panjang serta sejajar dengan pasangan nya.

Kemudian jajar genjang memiliki 2 buah pasang sudut siku – siku yang di mana pada masing – masing sudutnya sama besar dengan sudut di depan nya.

Sifat Bangun Datar Jajar genjang

  1. Sifat pada Jajar Genjang tidak memiliki simetri lipat.
  2. Jajar Genjang memiliki simetri putar tingkat dua.
  3. Sudut Jajar Genjang yang berhadapan memiliki ukuran yang sama besar.
  4. Jajar Genjang memiliki 4 sisi serta 4 sisi sudut.
  5. Diagonal yang dimilikinya memiliki panjang yang tidak sama.
  6. Jajar Genjang memiliki 2 Pasang Sisi yang sejajar serta sama panjang.
  7. Jajar Genjang memiliki 2 buah sudut tumpul dan 2 buah sudut lancip.

Rumus yang ada pada Bangun Datar Jajar genjang

Nama Rumus
Keliling (Kll) Kll = 2 × (a + b)
Luas (L) L = a × t
Sisi Alas (a) a = (Kll ÷ 2) – b
Sisi Sisi Miring (b) a = (Kll ÷ 2) – a
t diketahui L t = L ÷ a
a diketahui L a = L ÷ t

Contoh Soal

Perhatikanlah gambar jajaran genjang ABCD di bawah ini!

bangun datar persegi

Panjang BC = DA = 8 cm.

Pertanyaan:

a. Hitunglah luas jajaran genjang ABCD, merupakan:
b. Hitunglah keliling jajaran genjang ABCD, merupakan:

Jawab:

a. Luas jajaran genjang ABCD adalah = a x t, sehingga

= 8 cm x 7 cm
= 56 cm2

Jadi, luas jajaran genjang ABCD yaitu 56 cm2.

b. Keliling jajaran genjang ABCD adalah s + s + s + s, maka:

K = AB + BC + CD + DA, yakni :
K = 8 cm + 8 cm + 8 cm + 8 cm
= 32 cm.

Jadi, keliling jajaran genjang ABCD adalah 32 cm.

5. Trapesium

Pengertian Bangun Datar Trapesium

Pengertian dari trapesium sendiri merupakan suatu bangun datar 2 dimensi yang dibentuk dari 4 buah rusuk yang 2 buah di antaranya merupakan saling sejajar namun panjang nya tidak sama.

Tetapi terdapat juga trapesium yang rusuk ketiganya merupakan tegak lurus pada rusuk – rusuk sejajar nya yang biasa dikenal dengan sebutan trapesium siku – siku.

Sifat Bangun Datar Trapesium

  1. Trapesium adalah bangun datar dengan 4 sisi (quadrilateral).
  2. Memiliki 2 sisi sejajar yang tidak sama panjang.
  3. Memiliki 4 buah titik sudut.
  4. Minimal pada bagun datar trapesium memiliki 1 titik sudut tumpul
  5. Trapesium memiliki 1 simetri putar.

Rumus yang ada pada Bangun Datar Trapesium

Nama Rumus
Luas (L) rumus luas trapesium
Keliling (Kll) Kll = AB + BC + CD + DA
Tinggi (t) rumus tinggi trapesium
Sisi a (CD) rumus sisi trapesiumatau CD = Kll – AB – BC – AD
Sisi b (AB) rumus trapesiumatau AB = Kll – CD – BC – AD
Sisi AD AD = Kll – CD – BC – AB
Sisi BC BC = Kll – CD – AD – AB

Contoh soal:

Perhatikanlah bangun datar trapesium EFGH di bawah ini!

sifat bangun datar

Panjang EH = FG ialah 8 cm.

Pertanyaan:

a. Tentukanlah luas trapesium EFGH:
b. Tentukanlah keliling trapesium EFGH:

Jawab:

= ½  x  (16cm  +  6 cm) x  7 cm
= ½  x  22  cm x  7 cm
= 11cm  x   7 cm
= 77 cm2

Jadi, luas trapesium EFGH di atas adalah 77 cm2.

b. Keliling trapesium EFGH memiliki rumus yaknni: s + s + s + s, maka:

K = EF  +  FG  +  GH  +  HE
K = 16 cm  +  8 cm  +  6 cm  +  8 cm
= 38 cm.

Jadi, luas keliling trapesium EFGH di atas adalah 38 cm.

6. Layang – layang

Pengertian dari layang – layang sendiri merupakan suatu bangun datar 2 dimensi yang di bentuk oleh 2 buah segitiga sama kaki serta berbentuk segiempat di mana memiliki alas yang berhimpitan dan berbentuk menjadi suatu layang – layang.

gambar bangun datar persegi

Sifat Bangun Datar Layang – layang

  1. Layang-layang adalah suatu bangun datar dengan 4 sisi (quadrilateral).
  2. Memiliki 2 pasangan sisi yang membentuk sudut yang berbeda.
    Pasangan 1 merupakan sisi a dan b, membentuk sudut ∠ABC.
    Pasangan 2 merupakan sisi c dan d, membentuk sudut ∠ADC.
  3. Memiliki sepasang sudut yang saling berhadapan dengan besar ukuran yang sama.
    Sudut ∠BAD serta ∠BCD saling berhadapan dan memiliki besar yang sama.
  4. Memiliki 2 diagonal dengan panjang yang berbeda.
  5. Diagonal layang-layang saling tegak lurus (90º).
  6. Diagonal terpanjang adalah sumbu simetri layang-layang.
  7. Layang-layang hanya mempunyai 1 sumbu simetri.

Rumus yang ada pada Bangun Datar Layang – layang

Nama Rumus
Luas (L) L = ½ × d1 × d2
Keliling (Kll) Kll = a + b + c + d
Kll = 2 × (a + c)
Diagonal 1 (d1) d1 = 2 × L ÷ d2
Diagonal 2 (d2) d2 = 2 × L ÷ d1
a atau b a = (½ × Kll) – c
c atau d c = (½ × Kll) – a

Contoh Soal

Perhatikan layang layang ABCD di bawah ini!

ciri ciri bangun datar

DiketahuI;

Panjang BC = panjang CD
Panjang AB = panjang AD

Pertanyaan:

a. Hitunglah luas layang layang ABCD!
b. Hitunglah keliling layang layang ABCD!

Jawab:

= ½ x AC x BD
= ½ x 30 cm x 15 cm
= 225 cm2

Jadi, luas layang layang ABCD tersebut yaitu 225 cm2.

b. Keliling dari layang-layang ABCD adalah: 2 x (x + y), sehingga

= 2 x (AB + BC)
= 2 x (12 cm + 22 cm)
= 2 x 34 cm
= 68 cm

Jadi, keliling layang layang ABCD yaitu 68 cm.

7. Belah Ketupat

Belah Ketupat merupakan suatu bangun datar 2 dimensi yang dibentuk oleh 4 buah sisi dengan ukuran sama panjang serta memiliki 2 pasang sudut bukan siku-siku dengan sudut yang saling berhadapan memiliki besar sama.

Dalam bahasa inggris, belah ketupat disebut sebagai rhombus.

bangun datar segitiga

Sifat Bangun Datar Belah Ketupat

  1. Keempat sisinya sama panjang.
  2. Memiliki 2 diagonal yang saling tegak lurus.
    Diagonal 1 (d1) dan diagonal 2 (d2) pada belah ketupat saling tegak lurus membentuk sudut siku-siku (90°).
  3. Sudut yang saling berhadapan memiliki besar yang sama.
    Pada belah ketupat sudut yang berhadapan memiliki besar yang sama. Ilustrasi di atas menunjukkan besar sudut ∠ABC = ∠ADC dan ∠BAD = ∠BCD.
  4. Besar pada keempat titik sudutnya 360º.
  5. Memiliki 2 sumbu simetri yang di mana adalah diagonalnya.
  6. Belah Ketupat memiliki Simetri Putar tingkat 2.
  7. Memiliki 4 buah sisi dan 4 buah titik sudut.
  8. Keempat sisi belah ketupat mempunyai panjang yang sama.

Rumus yang ada pada Bangun Datar Belah Ketupat

Nama Rumus
Keliling (Kll) Kll = s + s + s + s
Kll = s × 4
Luas (L) L = ½ × d1 × d2
Sisi (s) s = Kll ÷ 4
Diagonal 1 (d1) d1 = 2 × L ÷ d2
Diagonal 2 (d2) d2 = 2 × L ÷ d1

Contoh Soal:

Perhatikan belah ketupat di bawah ini!

rumus bangun datar dan bangun ruang beserta gambarnya

Panjang AC adalah 12 cm
Panjang BD adalah 16 cm

Pertanyaannya yaitu:

a. Tentukanlah luas belah ketupat ABCD!
b. Tentukan simak keliling belah ketupat ABCD!

Jawab:

a. Luas belah ketupat ABCD adalah = ½ x d1 x d2, sehingga
= ½ x AC x BD
= ½ x 12 cm x 16 cm
= 96 cm2

Jadi, luas belah ketupat ABCD yaitu 96 cm2.

b. Keliling belah ketupat ABCD adalah: s + s + s + s, sehingga
= AB + BC + CD + DA
= 4 x s
= 4 x 10 cm
= 40 cm

Jadi, keliling belah ketupat ABCD yaitu 40 cm.

8. Lingkaran

Pengertian Lingkaran

Lingkaran adalah bangun datar dua dimensi dibentuk oleh himpunan semua titik yang mempunyai jarak sama dari suatu titik tetap.

lingkaran bd

  • Pusat lingkaran (P): Titik tetap pada lingkaran disebut sebagai pusat lingkaran.
  • Jari-jari (r): jarak titik lainnya pada pusat lingkaran disebut sebagai jari-jari lingkaran.
  • Garis lengkung: Himpunan seluruh titik lingkaran lalu membentuk garis lengkung yang menjadi keliling lingkaran.
  • Diameter (d): garis yang ditarik oleh dari dua titik pada garis lengkung dan melewati titik pusat disebut sebagai diameter (d). Diameter lingkaran memiliki panjang 2 × r.
  • phi (Ï€): nilai perbandingan antara keliling serta diameter lingkaran selalu konstan yakni 3,14159 (dibulatkan menjadi 3,14) atau 22/7. Nilai ini didapatkan dari Keliling ÷ Diameter = phi.

Sifat Bangun Datar Lingkaran

  1. Mempunyai simetri putar tak terhingga.
  2. Mempunyai simetri lipat dan juga sumbunya yang tak terhingga.
  3. Tidak memiliki titik sudut.
  4. Memiliki satu buah sisi.
Nama Rumus
Diameter (d) d = 2 × r
Jari-jari (r) r = d ÷ 2
Luas (L) L = π x r x r
atau
L = π x r2
Keliling (Kll) Kll = π x d
Mencari r r = kll/ 2Ï€
r = √L/ √Ï€

Contoh Soal

Mencari Luas

Apabila diketahui suatu lingkaran memiliki diameter 14 cm. Berapakah luas lingkaran tersebut?

Jawab:

Diketahui:

  • d = 14 cm

Sebab d = 2 × r maka:
r = d/2
r = 14/2
r = 7 cm

Ditanyakan:

  • Luas lingkaran?

Penyelesaian:

Luas = Ï€ × r²
Luas = 22/7 × 7²
Luas = 154 cm²

Sehingga, luas lingkaran tersebut yaitu 154 cm².

Mencari Keliling

Hitunglah keliling lingkaran yang memiliki jari-jari 20 cm.

Jawab

Diketahui:

  • r = 20 cm
  • Ï€ = 3,14

Ditanyakan:

  • Keliling lingkaran?

Jawab:

Keliling = 2 × Ï€ × r
Keliling = 2 × 3,14 × 20
Keliling = 125,6 cm

Sehingga, keliling lingkaran tersebut yaitu 125,6 cm.

Mencari Diameter

Diketahui suatu lingkaran mempunyai keliling sebesar 66 cm. Tentukan berapa diameter lingkaran tersebut!

Jawab

Diketahui:

  • Keliling = 66 cm

Ditanyakan:

  • Diameter lingkaran?

Jawab:

Keliling = Ï€ × d

Dalam mencari diameter, maka kita akan menggunakan rumus mencari diameter, yaitu:

Rumus mencari diamter ialah d = keliling / π

  • d = 66 / (22/7)
  • d = (66 × 7) / 22
  • d = 21 cm

Sehingga, diameter lingkaran tersebut yaitu 21 cm.

Demikianlah ulasan singkat kali ini yang dapat kami sampaikan. Semoga ulasan di atas dapat kalian jadikan sebagai bahan belajar kalian.

The post Bangun Datar appeared first on Tuliskan.

ARTIKEL PILIHAN PEMBACA :
Memuat...

Ketika Anda membaca kalimat ini, berarti Anda sudah sampai dibagian akhir dari pembahasan tentang Bangun Datar - Poin 100. Besar harapan kami ulasan yang kami sampaikan diatas bisa menjadi sarana pembelajaran untuk kita semua, terutama untuk Anda yang memang sedang mencarinya. Tak lupa kami sampaikan banyak terima kasih karena sudah berkunjung ke situs poin100. blogspot. com dan membaca hingga selesai. Salam santun dan sampai ketemu di artikel selanjutnya.

Comments

Popular posts from this blog

Cara Download Video Youtube - Poin 100

Cara Mengubah Video Menjadi MP3 - Poin 100

Contoh Berita Acara - Poin 100